首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17636篇
  免费   500篇
  国内免费   159篇
化学   11987篇
晶体学   141篇
力学   566篇
数学   2738篇
物理学   2863篇
  2021年   164篇
  2020年   263篇
  2019年   229篇
  2018年   205篇
  2017年   162篇
  2016年   349篇
  2015年   298篇
  2014年   357篇
  2013年   851篇
  2012年   874篇
  2011年   1153篇
  2010年   553篇
  2009年   490篇
  2008年   959篇
  2007年   954篇
  2006年   1014篇
  2005年   946篇
  2004年   846篇
  2003年   769篇
  2002年   739篇
  2001年   233篇
  2000年   199篇
  1999年   135篇
  1998年   149篇
  1997年   180篇
  1996年   230篇
  1995年   181篇
  1994年   202篇
  1993年   167篇
  1992年   163篇
  1991年   173篇
  1990年   146篇
  1989年   126篇
  1988年   155篇
  1987年   150篇
  1986年   124篇
  1985年   224篇
  1984年   257篇
  1983年   179篇
  1982年   248篇
  1981年   227篇
  1980年   232篇
  1979年   217篇
  1978年   206篇
  1977年   200篇
  1976年   194篇
  1975年   158篇
  1974年   174篇
  1973年   164篇
  1972年   77篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
The synthesis of titanium–carboxylate metal–organic frameworks (MOFs) is hampered by the high reactivity of the commonly employed alkoxide precursors. Herein, we present an innovative approach to titanium‐based MOFs by the use of titanocene dichloride to synthesize COK‐69, the first breathing Ti MOF, which is built up from trans‐1,4‐cyclohexanedicarboxylate linkers and an unprecedented [TiIV33‐O)(O)2(COO)6] cluster. The photoactive properties of COK‐69 were investigated in depth by proton‐coupled electron‐transfer experiments, which revealed that up to one TiIV center per cluster can be photoreduced to TiIII while preserving the structural integrity of the framework. The electronic structure of COK‐69 was determined by molecular modeling, and a band gap of 3.77 eV was found.  相似文献   
72.
Iridium‐catalyzed enantioselective allylic alkylation of branched racemic carbonates with functionalized alkylzinc bromide reagents is described. Enabled by a chiral Ir/(P,olefin) complex, the method described allows allylic substitution with various primary and secondary alkyl nucleophiles with excellent regio‐ and enantioselectivities. The developed reaction was showcased in a concise, asymmetric synthesis of (?)‐preclamol.  相似文献   
73.
The rational design of high‐performance fluorescent materials for cancer targeting in vivo is still challenging. A unique molecular design strategy is presented that involves tailoring aggregation‐induced emission (AIE)‐active organic molecules to realize preferable far‐red and NIR fluorescence, well‐controlled morphology (from rod‐like to spherical), and also tumor‐targeted bioimaging. The shape‐tailored organic quinoline–malononitrile (QM) nanoprobes are biocompatible and highly desirable for cell‐tracking applications. Impressively, the spherical shape of QM‐5 nanoaggregates exhibits excellent tumor‐targeted bioimaging performance after intravenously injection into mice, but not the rod‐like aggregates of QM‐2.  相似文献   
74.
Gastrointestinal cancers are a leading cause of mortality, accounting for 23 % of cancer‐related deaths worldwide. In order to improve outcomes from these cancers, novel tissue characterization methods are needed to facilitate accurate diagnosis. Rapid evaporative ionization mass spectrometry (REIMS) is a technique developed for the in vivo classification of human tissue through mass spectrometric analysis of aerosols released during electrosurgical dissection. This ionization technique was further developed by utilizing surface induced dissociation and was integrated with an endoscopic polypectomy snare to allow in vivo analysis of the gastrointestinal tract. We tested the classification performance of this novel endoscopic REIMS method in vivo. It was shown to be capable of differentiating between healthy layers of the intestinal wall, cancer, and adenomatous polyps based on the REIMS fingerprint of each tissue type in vivo.  相似文献   
75.
Conversion of biomass‐derived molecules involves catalytic reactions under harsh conditions in the liquid phase (e.g., temperatures of 250 °C and possibly under either acidic or basic conditions). Conventional oxide‐supported catalysts undergo pore structure collapse and surface area reduction leading to deactivation under these conditions. Here we demonstrate an approach to deposit graphitic carbon to protect the oxide surface. The heterogeneous catalysts supported on the graphitic carbon/oxide composite exhibit excellent stability (even under acidic conditions) for biomass conversion reactions.  相似文献   
76.
Silyl‐triflate‐catalyzed (4+3) cycloadditions of epoxy enolsilanes with dienes provide a mild and chemoselective synthetic route to seven‐membered carbocycles. Epoxy enolsilanes containing a terminal enolsilane and a single stereocenter undergo cycloaddition with almost complete conservation of enantiomeric purity, a finding that argues against the involvement of oxyallyl cation intermediates which have been previously proposed for these types of reactions. Reported are theoretical and experimental investigations of the cycloaddition mechanism. The major enantiomers of the cycloadducts are derived from SN2‐like reactions of the silylated epoxide with the diene, in which stereospecific ring opening and formation of the two new C? C bonds occur in a single step. Calculations predict, and experiments confirm, that the observed small losses of enantiomeric purity are traced to a triflate‐mediated double SN2 cycloaddition pathway.  相似文献   
77.
Control of boronic acid speciation is presented as a strategy to achieve nucleophile chemoselectivity in the Suzuki–Miyaura reaction. Combined with simultaneous control of oxidative addition and transmetalation, this enables chemoselective formation of two C? C bonds in a single operation, providing a method for the rapid preparation of highly functionalized carbogenic frameworks.  相似文献   
78.
Simultaneous manipulation of both spin and charge is a crucial issue in magnetic conductors. We report on a strong correlation between magnetism and conductivity in the iodine‐bonded molecular conductor (DIETSe)2FeBr2Cl2 [DIETSe=diiodo(ethylenedithio)tetraselenafulvalene], which is the first molecular conductor showing a large hysteresis in both magnetic moment and magnetoresistance associated with a spin‐flop transition. Utilizing a mixed‐anion approach and iodine bonding interactions, we tailored a molecular conductor with random exchange interactions exhibiting unforeseen physical properties.  相似文献   
79.
Metagenomic studies suggest that only a small fraction of the viruses that exist in nature have been identified and studied. Characterization of unknown viral genomes is hindered by the many genomes populating any virus sample. A new method is reported that integrates drop‐based microfluidics and computational analysis to enable the purification of any single viral species from a complex mixed virus sample and the retrieval of complete genome sequences. By using this platform, the genome sequence of a 5243 bp dsDNA virus that was spiked into wastewater was retrieved with greater than 96 % sequence coverage and more than 99.8 % sequence identity. This method holds great potential for virus discovery since it allows enrichment and sequencing of previously undescribed viruses as well as known viruses.  相似文献   
80.
A visible‐light‐mediated radical Smiles rearrangement has been developed to address the challenging synthesis of the gem‐difluoro group present in an opioid receptor‐like 1 (ORL‐1) antagonist that is currently in development for the treatment of depression and/or obesity. This method enables the direct and efficient introduction of the difluoroethanol motif into a range of aryl and heteroaryl systems, representing a new disconnection for the synthesis of this versatile moiety. When applied to the target compound, the photochemical step could be conducted on 15 g scale using industrially relevant [Ru(bpy)3Cl2] catalyst loadings of 0.01 mol %. This transformation is part of an overall five‐step route to the antagonist that compares favorably to the current synthetic sequence and demonstrates, in this specific case, a clear strategic benefit of photocatalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号